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Singularities in solutions of the three-dimensional 
laminar-boundary-layer equations 
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(Received 3 October 1984 and in revised form 10 May 1985) 

The three-dimensional steady laminar-boundary-layer equations have been cast in 
the appropriate form for semisimilar solutions, and it is shown that in this form they 
have the same structure as the semisimilar form of the two-dimensional unsteady 
laminar-boundary-layer equations. This similarity suggests that there may be a new 
type of singularity in solutions to the three-dimensional equations : a singularity that 
is the counterpart of the Stewartson singularity in certain solutions to the unsteady 
boundary-layer equations. 

A family of simple three-dimensional laminar boundary-layer flows has been 
devised and numerical solutions for the development of these flows have been 
obtained in an effort to discover and investigate the new singularity. The numerical 
results do indeed indicate the existence of such a singularity. A study of the flow 
approaching the singularity indicates that the singularity is associated with the 
domain of influence of the flow for given initial (upstream) conditions as is prescribed 
by the Raetz influence principle. 

1. Introduction 
The variety and significance of singularities that occur in the solutions to the 

laminar-boundary-layer equations have only recently really begun to be recognized. 
The classical Goldstein singularity (Goldstein 1948) that occurs in solutions to the 
steady two-dimensional boundary-layer equations, subjected to an adverse pressure 
gradient, has, of course, been known for over thirty years. This singularity is 
associated with the vanishing of the wall shear in the solution, and hence with steady 
boundary-layer separation. 

In 1951 Stewartson noted a new singularity in solutions to the unsteady boundary- 
layer equations. It occurs at the outer edge of the boundary layer, in contrast with 
the Goldstein singularity, which occurs at the wall. This singularity is found in the 
solution to the boundary-layer equations for a semi-infinite flat plate that is 
impulsively set into motion at  time t = 0 with a uniform velocity U. Stewartson 
pointed out that the singularity occurs at  the dimensionless time U t / x  of unity and 
physically represents a division between two modes of development of the boundary 
layer at a given point z on the plate. For U t / x  < 1 the flow develops locally as if it 
were unaware of the leading edge of the plate; for U t / x  > 1 the flow develops under 
the influence of the leading edge and ultimately, at large time, is represented by the 
Blasius solution. This type of singularity also appears in solutions for the flow past 
wedges that are impulsively set into motion, where it has the same physical 
significance (Nanbu 1977; Smith 1967; Williams & Rhyme 1980). 

In recent years numerical investigations of the unsteady laminar-boundary-layer 
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equations have indicated that there is another singularity in the solutions to the 
equations when the flow develops under the influence of an adverse pressure gradient 
(Telionis, Tsahalis & Werle 1973, Williams & Johnson 1974, 1975; Williams 1982). 
These results further indicate that as the singularity is approached the calculated 
characteristics of the boundary layer approach those associated with unsteady 
separation as postulated in the MooeRott-Sears model. In the Moore-RotMears 
model for unsteady separation, the velocity and shear vanish simultaneously at an 
interior point of the boundary layer, as seen in a coordinate system that is moving 
with separation. Quite recently, Williams & Stewartson (1982) have established the 
structure of this singularity, at least the case where separation is associated with the 
impulsive motion of a body with a sharp trailing edge. 

A singularity is also found in numerical solutions to the steady three-dimensional 
laminar-boundary-layer equations (Cebeci, Khatteb & Stewartson 1982 ; Williams 
1975). This singularity appears to be associated with three-dimensional separation, 
and the existing numerical solutions indicate that the line of separation is an envelope 
of limiting streamlines. 

At this juncture, the author must point out, lest the reader misunderstand, that 
the singularities discussed here are not to be expected in any real physical flow. Nature 
simply does not allow such singularities. These singularities arise only as a result of 
using an incomplete set of equations, the boundary-layer equations, in an attempt 
to describe the physics of the flow. It is certainly expected that, if we could solve the 
full equations describing the flow field, the Navier-Stokes equations, the solutions 
would not contain these singularities. On the other hand, it is important to note that 
all of the singularities found in solutions to the boundary-layer equations appear to 
be associated with a real physical or mathematical phenomenon. In each case, the 
calculated flow approaching the singularity exhibits physical characteristics that are 
associated with a real physical phenomenon. Thus, while we do not expect to observe 
singularities in real physical flows, the study of flows that contain singularities (in 
their solutions) yield valuable insight into the physics of real flows. 

In the present work we undertake a brief review of the semisimilar formulation 
of the two-dimensional unsteady and three-dimensional steady laminar-boundary- 
layer equations. In this review it is possible to identify all of the known singularities 
in the solutions to these equations and to identify the physical phenomenon that is 
associated with each singularity. We are also led to the conclusion that there is 
another, previously unidentified, singularity in the solutions of the three-dimensional 
study of laminar-boundary-layer equations. Solutions are obtained for this new case 
and compared with solutions for three-dimensional steady separation. The importance 
and meaning of the singularity are identified. 

2. Semisimilar formulation 
The singularities associated with a change in character of a flow impulsively set 

into motion (Stewartson’s singularity) and the singularity associated with unsteady 
separation become readily apparent when the unsteady problem is formulated in a 
pair of scaled coordinates (a semisimilar scaling). These singularities occur when a 
certain coefficient in this formulation vanishes (Wang & Shen 1978; Williams 1981). 
We further note that a semisimilar transformation may be applied to the three- 
dimensional steady laminar-boundary-layer equations (Williams 1975), and, when 
formulated in this fashion, the separation singularity is apparent and again occurs 
when a certain coefficient vanishes. We therefore formulate both the two-dimensional 
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unsteady and the three-dimensional steady problem in the semisimilar form with a 
view to identifying existing and new singularities. 

2.1. Two-dimensional unsteady laminar boundary layers 
We consider first the case of two-dimensional incompressible unsteady laminar 
boundary layers. Let x and y be the coordinates along and normal to the surface 
respectively, and u and v be the corresponding velocity components. Further, let 
t be time, v be the kinematic velocity and u8 be the velocity at the edge of the 
boundary layer, The laminar-boundary -layer equations describing the boundary-layer 
motion of interest are au av 

ax ay 
-+- = 0, 

au au au au au, a2u 
-+u-+v- = 4 + u  -+v- 
at ax ay at ax a y 2 '  

The boundary conditions applicable to the solutions of these equations are the usual 
no-slip conditions at the wall and the condition that the x-component of velocity, 
u(x, y ,  t )  match the known inviscid-flow solution u&, t )  as the distance from the wall 
becomes large. 

A major difficulty encountered in the solution of (1) and (2) is the existence of three 
independent variables (2, y ,  t )  in the problem. The technique of semisimilar solutions 
seeks to eliminate this difficulty by reducing the number of independent variables 
from three (2, y ,  t )  to two (7, f )  by appropriate scalings. In  the spirit of this 
transformation, we introduce two new scaled coordinates 7 and f defined by 

Here x* = x/l and t* = tU/ l  are normalized z- and time coordinates, U is a 
characteristic velocity and 1 is a characteristic length for the problem. The function 
g*(x*, t*) may be thought of as a scaling function for the normal, or y- ,  coordinate 
and f(x, t )  may be thought of as a new x-coordinate which has been scaled with time. 
In addition, a new non-dimensional stream function f ( f , 7 )  is introduced. This 
non-dimensional stream function is related to the usual stream function Y ( x ,  y ,  t )  by 

Y ( X ,  y ,  t )  = (vUl$g*(x*, t*) .a*(.*, t * ) f ( f ,  71, 

in which u: = us/ U .  The continuity equation is satisfiedidentically by the introduction 
of the stream function, and the momentum equation becomes, in terms of the 
dimensionless stream function and new coordinates, 

aaf, (d + e )  f ?+ d (1 - ($)2) + a (1-3 
a7 

The coefficients a ,  b,  c ,  d ,  e and h are defined by 
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Motion of 
Case 45) h(5) singularity Remarks 

1 positive positive upstream unsteady separation 
2 positive negative downstream Stewartson's singularity 
3 negative negative upstream - 
4 negative positive downstream - 

TABLE 1 

and, if semisimilar solutions are to exist, these coefficients must be functions of 5 alone. 
Additional details of the method of semisimilar solutions may be found in Williams 
& Johnson (1974). A t  this point it is convenient to write (3) as a system of two 
equations : 

a2w aw aw 
a7 a7 a t  :+a,-+aa, W + a 3  = a4-, (4) 

where 

a, = (d+e)f+h-+#T,  af a2 = -dW-a, a3 = d+a, a4 = c + h W .  
a5 

This form, in which W is treated as one of the dependent variables, emphasizes the 
parabolic nature of (3). Furthermore, this is the form in which (3) is generally 
formulated for numerical solution. Stewartson (1951) has pointed out that in an 
equation that has the form of (4) a singularity may occur when the coefficient of a 
leading term in the 5-derivative (the parabolic variable, i.e. a4) of the differential 
equation vanishes. When a4 changes sign in the interval of integration, the problem 
is referred to as singular parabolic. 

It should be noted that (3) contains the two-dimensional steady boundary-layer 
formulation with the Goldstein singularity, as a special case for steady flow 
( ~ ( 5 )  = b(6) = c ( f )  = 0 and a4 = h([)af/a~). When a4 vanishes just off the wall 
(af/aq = 0) the Goldstein singularity occurs. 

Suppose now that the coefficient up vanishes (a singularity occurs) at some (-station, 
say f;,. The singularity occurs when c ( t o )  = -h([,)af/a~ and moves in the physical 
coordinate system with velocity 

The direction of motion of the singularity is then determined by the signs of the 
coefficients c(6) and h(6).  Table 1 indicates the various combinations of c ( f )  and h(5) 
and the associated singularities which have been studied. 

In case 1 both c(5) and h(f;) are positive, and the singularity occurs when af/av 
becomes negative so that c(5) = -h(fJ af/Q. In a coordinate system moving with the 
singularity, as the singularity is approached, the flow field approaches one in which 
both the velocity and the shear vanish at  a point away from the wall. These are just 
the characteristics postulated by Moore (1958), Rott (1956) and Sears (1956) for 
unsteady separation. These results are taken as verification of the Moore-Rott-Sears 
model for unsteady separation. It is noted, however, that results have only been 
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obtained in case 1, where separation moves upstream. For case 4, which should 
correspond to separation moving downstream, no solutions have been obtained. 

In  case 2 the coefficient c(6)  is positive and the coefficient h(6) is negative, and so 
a4 approaches zero when the most negative value of h(5) which occurs at the 
outer edge of the boundary layer where af/aq = 1, approaches the value of ~ ( 6 ) .  In 
the case of a flat plate placed impulsively in motion, the shear on the plate varies 
according to Rayleigh's law (7, x t-4) until the effect of the leading edge is felt, and 
then undergoes a transition from the Rayleigh law to the Blasius law. That is, it takes 
a finite period of time for the effect of the leading edge to reach each point on the 
plate, and prior to that time the local flow behaves as if the plate were infinite. A 
similar argument may be made for flow past a wedge. 

Case 3 representa an unrealistic (mathematically) case in which a4 is never positive, 
so that (4) is never parabolic. Case 4 is, as indicated, a case that has not been studied 
as yet. This case is presently under investigation. 

2.2. Three-dimensional steady laminar boundary layers 
Let x and z be the orthogonal coordinates tangent to the body surface and y be the 
coordinate normal to the surface, with the corresponding velocity components u, w 
and v respectively. Let u, and w, be the x-  and z-components of velocity at the outer 
edge of the boundary layer and v be the kinetic viscosity. The boundary-layer 
equations for steady incompressible motion in three dimensions over a surface with 
large radii of curvature are 

The boundary conditions for this set of equations are 

u(x,O, z )  = w ( x , O ,  z )  = w(x,O, z )  = 0, 

lim u(z, y,z) = u,(x, z ) ,  lim w(x, y ,  z )  = w,(x,z). 
Y*W U*W 

Here again we reduce the number of independent variables from three to two by 
introducing new scaled coordinates 71 and 6 defined by 

and new dimensionless stream functions P(q,E) and G(q, 6 )  defined such that 
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Slope of 
Case 45) H(5) singular line Remarks 

1 positive positive negative three-dimensional separation 
2 positive negative positive - 
3 negative negative negative - 
4 negative positive positive - 

TABLE 2 

The continuity equation is satisfied identically by this choice of stream functions, and 
the x- and z-momentum equations become 

= 0. (12) 
a2GaF aF a2G 

av2 at; ar * a t  
a2G aG aG a2G 
ar2 at; 36% 

In  the transformed coordinate system the boundary conditions become 

aF aG 
lim - ( t ; , ~ )  = 1, lim - ( f , ~ )  = 1.  
9-w a7 9-OD a7 

The coefficients A ,  B ,  C ,  D ,  E ,  H ,  I and J are defhed by 

and, if semisimilar solutions are to exist, these coefficients must be functions of 6 alone. 
Here the velocity components, coordinates and g scaling factor have been non- 
dimensionalized according to u: = u/ U ,  w: = Wa/U, g* = (U/E):g, x* = x / l ,  z* = z / l ,  
where U and 1 are some characteristic velocity and length for the problem under 
consideration. Additional details of the method of semisimilar solutions applied to 
three-dimensional steady boundary layers may be found in Williams (1975). 

It should be noted that (1 1) and (12) contain the steady two-dimensional problem 
as a special case in which w: = 0 and a/& = 0 (hence C = E = I = D = J = 0 and 
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G ( 6 , q )  = 0). In  addition, (1 1) and (12) contain as a special case the flows over infinite 
swept cylinders, in which w$ = w$(z*) and a/&* = 0 (hence C = E = I = D = J = 0). 

As in the unsteady case, it  is convenient to rewrite (11) and’(12) as the system of 
equations 

where 

a13 = A + E ,  a,, = C + J ,  

We note here that, aa in the unsteady case, the formulation of the problem as in 
(14)-(16) emphasizes the parabolic nature of the problem (so long as a14 = a2, is 
positive), and is the form in which (1 1) and (12) are often formulated for numerical 
solution. Further, we can see that, as in the.unsteady case, one would expect a 
singularity in the solution as a,, (or a,,) approaches zero. 

Separation of three-dimensional incompressible laminar boundary layers was 
studied using the technique of semisimilar solutions in Williams (1975). Although the 
nature of three-dimensional separation was determined there, the direct correlation 
between separation and the vanishing of the coefficient a,, (or a,,) was not made. 
For the sake of completeness, the direct correlation between three-dimensional steady 
separation and the vanishing of all will be demonstrated later. It suffices at this point 
to note that such a correlation does exist. 

Assuming that such a correlation exists, then separation occurs at the point (line) 
where a14 = 0, or when I(6) W / a q  = - H(6)  aF/aq and the slope of the singular line 
is (at t,, = 8) given by 

Table 2 indicates the various combinations of the coefficients I ( [ )  and H(6)  and the 
associated singularity that has been studied. 

In  case 1 both I(6)  and H(8)  are positive, so that a14 becomes zero when either aF/aq 
or aQ/av become sufficiently negative that H(5)  aF/aq = - I ( [ )  aG/aq. As the 
singularity is approached, the flow may exhibit one of two possible behaviours 
(Williams 1975). In  the first of these, both the 2- and z-components of shear approach 
zero simultaneously, so that the total shear is zero along the separation line. This 
type of separation has been termed by Maskell (1955) ‘singular separation’. In  the 
second case the ‘limiting’ or ‘wall ’ streamlines turn so that they all become tangent 
to a singular line at separation ; i.e. the separation line is an envelope of the ‘limiting ’ 
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U / U 8  

FIQURE 1. Velocity profiles for the 2-component of velocity; 6 = z* +pz*, u: = 1, w: = 1 -& 
/y= 1:-,5=0. - - _ _ _ _  , 0 . I ;  -- , 0.239. 

streamlines. This type of separation has been termed by Maskell (1955) ordinary 
separation. Case 2 has apparently never been studied, but the similarity in form of 
(14)-(16) with (4) and (5) for two-dimensional unsteady flow and the similarities 
between tables 1 and 2 suggests a strong similarity between this case and case 2 of 
table 1. Case 3 represents an unrealistic case (mathematically) in which aI4 is always 
negative so that (14) and (15) are never parabolic. Case 4 is a case that remains to 
be studied. 

We have noted the similarity between the equations of motion for the two- 
dimensional unsteady and the three-dimensional cases when formulated for semisimilar 
solutions. This similarity is particularly evident when (4) and (5) for two-dimensional 
unsteady flow are compared with (14)-( 16) for steady three-dimensional flow. In  light 
of this, it  is intriguing to note that, while solutions have been obtained for two 
separate types of singularity associated with two-dimensional unsteady flow (see 
table l),  solutions have only been obtained for one type of singularity associated with 
three-dimensional steady flow (see table 2). For two-dimensional unsteady-flow 
solutions with singularities have been obtained in case 1 ( ~ ( 6 )  > 0, h(E) > 0) and 
case 2 (~(5) > 0, h(5) < 0), while for three-dimensional steady flows solutions with 
singularities have only been obtained for case 1 (H(5)  > 0, I ( [ )  > 0). Quite naturally, 
the question arises as to whether or not there are solutions with singularities possible 
for case 2 for three-dimensional steady flows; is there a counterpart to the Stewartson 
singularity in the three-dimensional case ? We shall pursue that question further later 
and demonstrate that a new singularity exists in solutions to the three-dimensional 
steady laminar-boundary-layer equations for case 2 noted above and that this 
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W I W d  

FIGURE 2. Velocity profiles for the z-component of velocity; E = x*+Bz*, u: = 1, w: = 1-6, 
B = 1 : -, 5 = 0; -----, 0.1 ; -- , 0.239. 

singularity is a counterpart to Stewartson’s singularity. First, however, it is necessary 
to demonstrate completely the correlation between separation and the coefficient a14. 

3. Three-dimensional steady separation reviewed 
As mentioned earlier, three-dimensional steady laminar boundary layers were 

studied using the technique of semisimilar solutions (Williams 1975). At the time of 
that work, however, the significance of the vanishing of the coefficient aI4 was not 
recognized. Although the nature of three-dimensional laminar separation was noted, 
the correlation between separation and the vanishing of a14 was not made. To make 
that correlation clearly, we now study an entirely new three-dimensional laminar 
boundary layer that approaches separation, employing the technique of semisimilar 
solutions. We consider the three-dimensional steady boundary-layer problem in 
which 

= x*+pz*,  

.a* = 1, w: = 1-6 = 1 -x*-pz* ,  

This is a very simple example of a three-dimensional flow for which a semisimilar 
solution exists. The z-component of the external velocity is uniform, while the 
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0.1 ,0.2 0.3 0.4 0.5 0.6 0.7 0 
5 

FIQURE 3. Variation of aa,,/av lq-,, with E = z*+pz*; U$ = 1, W$ = 1-5. 

z-component is linearly retarded in both the 2- and z-directions. The pressure gradient 
in the x-direction is zero, while that in the z-direction is given by 

ap - vk {(l+/?)-/?.*-$z*}. 
p a2 i 

The pressure gradient is adverse, but its magnitude decreases as either x* or z* 
increases. This is a three-dimensional counterpart to the Howarth's classical two- 
dimensional linearly retarded flow. 

As in the cases studied in Williams (1975), the solution is begun at  5 = 0, where 
a similar solution exists, and is marched forward in the direction of increasing 6. A t  
each (-station an iteration is required as a result of the nonlinearity of the problem. 
At  some downstream station the number of iterations required to obtain a converged 
solution starts to grow with each succeeding station, until at  one station convergence 
cannot be obtained in a reasonable number of iterations. This behaviour is taken, 
by analogy with finite-difference calculation of the two-dimensional laminar boundary 
layer, as an indication of approaching a point of singular behaviour in the solution 
of the laminar-boundary-layer equations. It is possible to track the variation of the 
coefficient a14 as the solution proceeds. As noted earlier, this coefficient is given by 

For the present case H(5)  = 5 and I ( [ )  = /?E(l-lJ. Thus the coefficient a14 can only 
vanish if either aF/aq or aG/aq becomes negative. This is indeed what happens. 
Figures 1 and 2 show velocity profiles (aF/ay and aG/ay respectively) at several values 
of 6 for the case in which /? = 1. Beyond 6 x 0.180 the w velocity component is 
negative near the wall. The coefficient a14 is always zero at  the wall. The minimum 
value of aI4 in the fluid occurs immediately adjacent to the wall. The vanishing of 
a14 in the fluid (i.e. not on the wall) occurs when aa14/ay(,T, = 0. Thus, instead of 
tracking aI4 at some arbitrary point near the wall to determine when this coefficient 
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0 

- 2  

FIGURE 4. Variation of wall streamline angle ys with E; = x*+p*;  u$ = 1, w$ = 1-6. Limiting 
values of yE corresponding to the limit value of 6 are indicated by short horizontal lines. 

vanishes in the fluid, we have tracked aa,,/aq The variation of this derivative 
with 6 is shown in figure 3 for = 0.25,0.50,0.75 and 1.0. As E increases from zero, 
aa,,/aq increases, reaches a peak and then drops precipitously toward zero. As 
aa14/aq decreases toward zero the number of iterations required for convergence 
at  each station increases, indicating, as noted above, the approaching of a singularity. 
For the case in which = 1.0, extrapolation of the results indicates that the 
singularity occurs at 6 !z 0.24. 

The question now arises as to  what, if any, physical or mathematical significance 
can be associated with the singularity. We note that the angle y, of the limiting 
streamlines (or wall streamlines), the projection of the streamlines closest to the wall, 
on the wall, is given by 

The angle for the lines of constant E,  including the one corresponding to the 
singularity, is given by 

yE = arctan- = arctan (- j) . 
dx dz I E-const 

The angle y, of the wall streamlines is presented in figure 4 as a function of 6 for 
each of the values of 8 studied. In all cases the angle of the wall streamlines a t  6 = 0 
is 45' (0.785 rad), as one might expect. As 6 increases, ys decreases, approaching a 
limiting value as the separation singularity is approached. We note that the limiting 
value of y, approached in each case is just the value of yE for that case (value of 8). 
The value of yE for each case is denoted by a short horizontal line in figure 4. 
Physically, this indicates that for any given case the limiting streamlines are 
approaching a limiting line along which the limiting streamlines are becoming tangent 
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FIGURE 5. Limiting streamlines and line of constant 6 corresponding to singularity; 
6 = %*+Bz*, u: = 1, w: = 1-6, B = 1 :  -----, streamlines; -, 6 = 0.239. 

to the line of separation. This type of separation is termed ‘ordinary ’ separation by 
Maskell (1955). This result is verified in figure 5, where several streamlines have been 
plotted in the (z*, z*)-plane for the case p = 1. Also plotted is the limiting value of 

corresponding to the singularity; i.e. t,, x 0.24. 
We note that in the case of three-dimensional separation the vertical component 

of velocity near the wall increases rapidly as separation is approached. Figure 6 shows 
the variation of the calculated vertical component of velocity w* near the wall (at 
7 = 0.02) for the case p = 1.0. The rapid increase of w* near separation is quite 
evident here. We note that this behavior is similar to the rapid increase in the vertical 
component of velocity near separation in unsteady two-dimensional boundary-layer 
solutions (Williams & Johnson 1974). 

Finally, it is interesting to note that along the line of singularity that corresponds 
to  separation both u: and w: are constant, so that along this line the total velocity 
and static pressure in the external stream are constant. This is consistent with an 
observation made by Telionis & Costis (1983) based on an experimental study of 
three-dimensional laminar separation. 

4. A new singularity 
We now consider the question posedearlier : is there a three-dimensional counterpart 

to the Stewartson singularity found in certain two-dimensional unsteady flows ? If 
such a singularity does occur it should have the same general properties as the 
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FIGWE 6. Variation of vertical component of velocity at r,~ = 0.02 ; 
6 = Z*+/!?Z*, u; = 1, w; = 1-6, /!? = 1. 

Stewartson singularity. That is, (i) it  should occur in a favourable or zero pressure 
gradient, and (ii) it should occur at the outer edge of the boundary layer. Using these 
two properties as a guide, we have generated a family of flows in which this singularity 
occurs. We now study this family of flows in detail to determine first the general 
nature of the singularity and secondly the physical and mathematical nature of the 
flow approaching the singularity. 

The family of flows to be considered is a simple three-dimensional counterpart of 
the classical two-dimensional Falknel-Skan flows, in which 

u: = 1, w: = Z*P) 

where B is a constant. Guided by previous work, we take the scaling function g*2 to 
be x*/u:. It is now necessary to determine the appropriate scaling function 5. Along 
lines of constant 5 we have 

or, using (13f) 91, 

Integration leads us to the conclusion that the scaling function 5 must be some 
function of the combination x*/z*(l-B. We choose here the simplest of the functional 



270 J .  C. Williams 

FIQTJRE 

0.11 

0.1( 
or 

OC14ed(ye 

0.05 

Variation o 

/ '-\ 
- 1  \ 

I \ 
I \ 
I \ 

0 

0 0.2 0.4 0.6 0.8 1.0 

5 

90 

80 

70 

60 

50 Iterations 

40 

30 

20 

10 

3 

al,, aa14/@ and the number of iterations required for convergence 
with 6 :  -, i3a14/i3ql,,-o; 0, number of iterations for convergence for ,9 = 0.5; -----, a14,dee; 
A, number of iterations for convergence for B = -0.5. 

forms available; i.e. 5 = z*/z*('-@). With these choices of ug*, w:, g*2 and 6 ,  the 
coefficients (13a-h) that appear in (11) and (12) become 

4 5 )  = 0, B(5) = 4, 
C(5) = BE, W )  = 0, 

E(5) = 0, H(5)  = 5, 
45) = -(1-/3)5", J(5)  = 0. 

With all of these coefficients now defined, solution of (11) and (12) is 

For this simple flow the pressure gradient in the z-direction is zero, while the 
straightforward. 

pressure gradient in the z-direction is given by 

The pressure gradient in the z-direction is favourable (negative) for positive values 
of /3 and unfavourable (positive) for negative values of /3. In  the spirit noted above, 
then, solutions were initially obtained for positive values of /3 of 0, 0.2, 0.5 and 0.8. 
The results obtained in these cases were so different from what was expected that 
the range of /3 studied was extended to cover a range of negative fl  of -0.5, - 1.0, 
- 1.5, -2.0. 
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0 0.2 0.4 0.6 0.8 1.0 
u/ u6 

FIGURE 8. Velocity profile for the x-component of velocity; 5 = x* fz*C1-n, ut = 1, we* = z*p, 
B = 0.5: -, 5 = 0 ;  -----, 0.6; -- , 1.07. 

4.1. Favourable pressure gradient 
As in the cams where separation is encountered (5 3), the solutions start at 5 = 0, where 
a similar solution exists, and proceed in the direction of increasing 5. At  some 
downstream station the number of iterations required for convergence begins to grow 
with each succeeding station, until at one station convergence cannot be obtained 
in a reasonable number of iterations (120). Again, this behaviour is taken, by analogy 
with the finite-difference calculation of the two-dimensional steady, two-dimensional 
unsteady, and three-dimensional steady boundary layer, as an indication of 
approaching a point (line) of singular behaviour in the solution of the laminar- 
boundary-layer equations. At the same time as the number of iterations required for 
convergence is tracked, the value of all a t  the outer edge of the boundary layer is 
also tracked, for it,was anticipated that the singularity would be related to the 
vanishing of this coefficient. Surprisingly, the singularity was not associated with the 
vanishing of a, at the outer edge of the boundary layer but with the vanishing of 
this coefficient near the wall. Here again a14 is always zero at the wall and the 
condition we are looking for is the vanishing of the coefficient a14 in the fluid near 
the wall. This occurs when aa14/% = 0. Thus for these flows we have tracked 
aa14/3 I,-o to determine when a vanishes in the fluid. Figure 7 shows the variation 
of aa14/aq = + 0.5 from 5 = 0 to 5 = 1.07, the last station at  which 
convergence can be obtained in less than 120 iterations. As 5 increases from zero 
aa14/aq increases, reaches a maximum and then drops precipitously to zero. (In 
fact, at the last station at  which convergence was obtained in a reasonable number 

for the case 
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FIGURE 9. Velocity profiles for z-component of velocity; 6 = x*/z*(l+, u: = 1 ; w: = z*B, 
/9 = 0.5: -, 5 = 0 ;  -----, 0.6; -- , 1.07. 

of iterations, aa,,/aTl,,,,, was very slightly negative.) Also shown in figure 7 is the 
number of iterations required for convergence at each station. 

For /3 = 0.5 we have us* = 1, w$ = z*f, H ( f )  = f and I ( [ )  = -0.5t2. Thus the 
coefficient aI4 can vanish near the wall with both aF/av and aG/@ positive. This is 
indeed what happens. Figures 8 and 9 show both the u- and w-velocity profiles at 
several (-stations for the caae /3 = 0.5. These velocity profiles are typical of the 
results obtained for other values of /3 for /3 > 0. The only peculiarity in the profiles that 
might indicate what might be happening is the rather obvious fact that the boundary 
layer is becoming thinner as the singularity is approached! This is consistent 
with behaviour of the boundary layer on a plate impulsively placed into motion 
(Stewartson’s singularity) and just the opposite of the boundary-layer behaviour aa 
three-dimensional separation is approached. 

4.2. Adverse pressure gradient 
As mentioned earlier, there initially had been no intention of obtained solutions for 
negative values of /3, i.e. for an adverse pressure gradient. It had been anticipated 
that solutions for flows with an adverse pressure gradient would simply yield 
separating flows, and thus would provide no new information beyond that provided 
in $3. When consideration of positive values of /3 failed to yield a singularity at the 
outer edge of the boundary layer, the range of /3 considered was extended to include 
negative values of /3, as noted above. 

As in the earlier cases, these solutions start at f = 0, where a similar solution exists, 
proceed in the direction of increasing (. Again, at some downstream station the 
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B 5, Last value of 5 for convergence 
0.5 Q 0.665 

-1.0 t 0.495 
0.39 
0.33 

-1.5 B 
-2.0 4 

TABLE 3. Comparison of calculated values of 5, with the last value of 5 for which convergence 
could be obtained 
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FIQUBE 10. Velocity profiles for the xpomponent of velocity; 5 = x*/z*('-fl), u: = 1, 
W: = %*I, B = -0.5; -, 5 = 0 ; - -  , 0.665. 

number of iterations required for convergence begins to grow with each succeeding 
station until one-station convergence cannot be obtained in a reasonable number of 
iterations. Again this behaviour is taken, as explained above, as an indication of 
approaching a point (line) of singular behaviour in the solution of the laminar- 
boundary-layer equations. At the same time as the number of iterations required for 
convergence is tracked, the value of aI4 at the outer edge of the boundary layer is 
also tracked. In this case it was found that the approaching of the singularity was 
indeed associated with the vanishing of the coefficient aI4 at the edge of the boundary 
layer. Figure 7 shows the variation of aI4 at the outer edge of the boundary layer 
and the number of iterations required for convergence for the case B = -0.5 from 
E = 0 to 5 = 0.665, the last station at which convergence can be obtained in less than 
120 iterations. As increases, aI4 at the outer edge increases, reaches a maximum, 
and then drops precipitously towards zero; at the same time the number of iterations 
required for convergence increases sharply. 
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FIQURE 11.  Velocity profiles for the z-component of velocity ; = x*/z*(l-fl,  ud = 1, w; = z*B, 
p = - o 5 . -  - ,  ( = O  , 0.4; -- , 0.665. 

For B = -0.5 we have u$ = 1, w: = z*-t, H(5)  = 5, I ( 5 )  = - 1.5p. The coefficient 
aI4 can vanish at the outer edge of the boundary layer with aF/aq and aG/aq both 
positive. In fact, since both aF/aq and aG/aq are unity a t  the outer edge, a14 at the 
outer edge is given by alledge = - (1 -B) p + 5. Thus the value of E at which alledge 

vanishes is given by 5, = l / ( l -P) .  Table 3 compares the value of EC with the last 
value of E a t  which convergence can be obtained, for several values of /3. Clearly, the 
last values of 5 for which convergence was obtained are close to the predicted values 
of EC for which alledge vanished. 

With an adverse pressure gradient in the z-direction it was expected that the 
z-component of shear would decrease and perhaps even become negative. This is 
indeed what happens, as shown in figures 10 and 11. As indicated in figure 10, the 
u-component of velocity is little affected by changes in 6. The velocity profile for 
5 = 0.4 is, for all practical purposes, the same as that for 5 = 0, and is thus not plotted 
in figure 10. The w-component of velocity, however, varies strongly with 5, as shown 
in figure 11. The adverse pressure gradient in the z-direction causes a strong reduction 
in shear (with increasing 5) and, close to the singularity, a slight backflow in the 
z-direction. If should be noted, however, that the pressure gradient, in all cases 
studied, was never sufficiently strong to promote separation before the outer-edge 
singularity was encountered. 

4.3. The signi$mnce of the singularity 
A review of the semisimilar formulation of the two-dimensional unsteady and the 
three-dimensional steady boundary-layer equations indicated that there might be a 
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FIGURE 12. Wall streamlines and lines of constant 5 = z*/z*(l-fl); u$ = 1, wf = z*fl, /3 = 0.5: 
-, wall streamlines; -----, line of constant E. 

new type of singularity in the solutions to the three-dimensional steady laminar- 
boundary-layer equations. Numerical solutions of the three-dimensional steady 
boundary-layer equations in the semisimilar formulation has indicated not one but 
two new singularities. The question that now arises is: ‘what is the significance of 
these singularities ? ’ 

The fact that the singularities occur either at the outer edge of the boundary layer 
or a t  the wall suggests that we first look in these areas. A great deal can be learned 
by tracking the angle of the outer-edge streamlines or the wall streamlines as in the 
case of separation (93). The numerical results indicate that in the case of favourable 
pressure gradients (/3 > 0) the slope of the wall streamlines approaches the slope of 
the constant-[ line corresponding to the singularity as the singularity is approached. 
This is exactly the behaviour encountered in the case where separation is approached 
(figure 4). In the case of adverse pressure gradients (b < 0) the slope of the external 
streamlines (streamlines at the outer edge of the boundary layer) approach the slope 
of the constant-[ line corresponding to the singularity as the singularity is approached. 
These results could be shown graphically, as in figure 4. It is more instructive, 
however, not to look at the streamline angle but at the streamlines and the lines of 
constant 6. Figure 12 shows several wall streamlines as well as several lines of constant 
[, for a case with a favourable pressure gradient (/3 = 0.5), and figure 13 shows several 
external streamlines as well as several lines of constant 5 for a case with an adverse 
pressure gradient (B = -0.5). In each case the last value of [ at which a solution can 
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FIGURE 13. Outer-edge streamlines and lines of constant 6 = X * / Z * ( ' - @ ;  u: = 1, w? = ,*I, 
/3 = -0.5; -, outer-edge streamlines; -----, lines of constant 6. 

be obtained corresponds very closely to the streamline (the wall streamline for 
/3 = 0.5, the external streamline for /3 = -0.5) that passes through the origin 
(z* = z* = 0). The singularity occurs at the value of f that corresponds to the 
streamline which defines the limit of the domain of influence for the given set of initial 
( f ;  = 0) conditions. This is simply an application of the Raetz 'influence principle' 
(Raetz 1957; Nash & Patel 1972), which defines domains of influence and domains 
of dependence for three-dimensional boundary-layer calculations. This principle is 
based on the fact that a disturbance at a point in the boundary layer is instantly 
transmitted up and down the normal to the body surface through that point and is 
convected downstream along all the streamlines passing through this line. Thus for 
each point on the body there is a zone of influence and a zone of dependence, in the 
shape of curvilinear wedges, one opening in the upstream direction and the other in 
the downstream direction. The zones of influence and dependence are bounded by 
the streamlines of maximum and minimum angles passing through the body normal 
at the point in question. A clear and succinct discussion of the Raetz influence 
principle including its implications with respect to upstream or initial conditions is 
given by Nash & Patel (1972). 

Consider now the wall streamlines and lines of constant f shown in figure 12 for 
p = 0.5. The wall streamlines provide only one of the boundaries of regions of 
influence and dependence. The other boundary is given by the streamh:ies at the outer 
edge of the boundary layer. These external streamlines are omittec. in figure 12 in 
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order to avoid cluttering the figure. We note, however, that the slope of the outer-edge 
streamline is given by 

while the slope of the wall (limiting) streamlines is given by 

For B = 0.5 (in fact for all cases with a favourable pressure gradient) G"(& O)/F"(f;, 0) 
is greater than unity. Thus at a given point the slope of outer-edge Streamline will 
be smaller than the slope of the wall streamline. In particular, the external streamline 
through the origin will lie below the wall streamline through the origin. 

Now any point above the wall streamline through the origin (or for 6 < 1.07) lies 
in the domain of influence of the points along the line 6 = 0 (z* = 0), and hence can 
be calculated since the initial conditions along this line are given. On the other hand, 
any point below the streamline through the origin (and hence for 6 > 1.07) lies in 
the domain of influence of points along the line z* = 0, z* > 0 (C+ a). Points below 
6 = 1.07 therefore cannot be calculated because they do not lie in the domain of 
influence of the given initial conditions (along 6 = 0). The singularity occurs along 
and the calculation is limited by the boundary of the domain of influence of the initial 
conditions for the flow. 

A similar argument may be made for the case where B = - 0.5 (and in fact for the 
cases studied for which B < 0) .  For these cases G"(6, O)/F"(& 0) is always less than 
zero, so that the wall streamline at a given point always has a smaller slope than the 
external streamline through that point. In  particular, the wall (or limiting) streamline 
though the origin has a smaller slope than, and thus lies below, the external streamline 
through this position. In this case, then, it is the external streamline which determines 
the limiting extent of the calculation. The calculation can be continued up to 
6 = 0.665 which corresponds to the external streamline through the origin. Above this 
streamline all points lie in the domain of influence of the initial conditions along f; = 0. 
Points beyond 6 = 0.665, i.e. below the streamline through the origin, (and 6 = 0.665) 
do not lie in the domain of influence for the given initial (6 = 0) conditions, but lie 
instead in the domain of influence of points along the line z* = 0, z* > 0 (t-. ao). 
Again, points beyond 6 = 0.665 cannot be calculated in the present coordinate system 
since they are influenced by the 'downstream ' conditions at 6 = 00. 

It is concluded, then, that the new singularities that have been observed here 
correspond to the limits of integration of the three-dimensional laminar-boundary- 
layer equations as dictated by the Raetz influence principle. The singularity occurs 
along the line that corresponds to the streamline marking the boundary of the region 
where the flow is influenced by the given set of initial conditions. 

It is not surprising that these singularities in the solution of the three-dimensional 
laminar-boundary-layer equations are analogous to the Stewartson singularity in 
unsteady two-dimensional flow. The Stewartson singularity marks the boundary 
between the region that is uninfluenced by the leading edge ( U t / z  < 1) and the region 
that is influenced by the leading edge ( U t / z  > 1). In  the case of the singularities 
studied here, these singularities mark the boundary between the region that is 
influenced by the initial (in this case, leading-edge) conditions and the region 
influenced by the downstream (t-. ao) conditions. 

This similarity between the singularities reported here for certain three-dimensional 
flows and the Stewartson singularity found in certain unsteady two-dimensional flows 
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suggests that, as in the case of the Stewartson singularity, the singularity found in 
these three-dimensional flows might be removed by employing numerical techniques 
that account for the direction of the flow of information. In  the case of flat plate or 
wedge set impulsively into motion, the Stewartson singularity is avoided by 
employing finite differences that have different directional properties depending upon 
whether a4 (equation (4)) is positive or negative (Williams & Rhyne 1980). It seems 
logical that, owing to the above-noted similarity, the singularities that are associated 
with the Raetz influence principle might be removed if one were to employ finite 
differences for a W,/ag and aW2/a[ (equations (14), (15)) according to the sign of the 
coefficient a14 (= a24). Employing such a technique simply accounts for the direction 
of the flow of information from the prescribed boundaries. 

Since the outer-edge velocity components are prescribed in boundary-layer theory, 
the outer-edge streamline pattern is known. It should be a simple matter, then, to 
determine the streamline at the edge of the boundary layer that defines the limit of 
the domain of influence for a given set of initial conditions. This line defines two 
regions in which the numerical derivatives for aWl/a[ and aW,/a[ should be 
directionally different to account for the direction of the flow of information. On the 
other hand, the streamline pattern at the wall is not known a priori, but is 
determined as part of the boundary-layer calculation. Thus one can never be sure 
beforehand that a three-dimensional laminar-boundary-layer calculation will not 
reach a point where further calculation will violate the Raetz influence principle at 
the wall. Thus three-dimensional laminar-boundary-layer calculations must be 
carried out with great care to ensure that the Raetz influence principle is not violated. 
The present results suggest that if, in a given calculation, the Raetz influence principle 
is violated, either at the outer edge of the boundary layer or at the wall, one may 
expect to encounter singular behaviour in the numerical calculation. 
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